CHEMICAL THERMODYNAMICS ANSWERS

energy = anything that has the capacity to do work

work = force acting over a distance

Energy (E) = Work = Force x Distance

First Law of Thermodynamics: energy cannot be created or destroyed.

Different forms of energy include **electrical**, **heat** (thermal), **light** (radiant), **nuclear**, **chemica**. Energy can be converted between these forms e.g. chemical energy during a chemical reaction is released as light and heat energy (e.g. thermite process).

KE (kinetic energy) = $1/2 \text{ m v}^2$ (unit = kgm²s⁻²)

Joule (J) = the amount of energy needed to move a 1 kg mass a distance of 1 meter.

 $1 \text{ J} = 1 \text{ N} \cdot \text{m} = 1 \text{ kg} \cdot \text{m}^2 \text{s}^{-2} (\text{kg} \cdot \text{m}^2/\text{s}^2)$

Energy conversion factors

1 calories (cal)	4.184 joules (J)
1 Calorie (Cal) or kilocalorie (kcal)	1000 cal = 4184 J
1 kilowatt-hour (kWh)	3.60 x 10 ⁶ J

calorie (cal) = the amount of energy needed to raise one gram of water by 1°C
kcal = energy needed to raise 1000 g of water 1°C
food Calories = kcals
system = the material or process we are studying the energy changes within

surroundings = everything else in the universe

 $\Delta Energy_{universe} = 0 = \Delta Energy_{system} + \Delta Energy_{surroundings}$

- when energy flows out of a system, ∆E_{system} is —
- when energy flows into the surroundings, ∆E_{surroundings} is +

 $\checkmark \Delta E = E_{\text{final}} - E_{\text{initial}}$

- $\checkmark \Delta E_{reaction} = E_{products} E_{reactants}$
- $\checkmark \Delta E = q + w; q = heat energy; w = work energy$

 $\Delta E > 0$ (positive) system gains energy

 $\Delta E < 0$ (negative) system releases energy

Internal energy = sum (Σ) of the **kinetic** and **potential energies** of all the particles that compose the system.

thermal equilibrium = heat flows from matter with *high temperature* to matter with *low temperature* until both objects reach the same temperature

specific heat capacity = the amount of heat energy required to raise the temperature of one gram of a substance by 1°C. Units $Jg^{-10}C^{-1}$ (J/g.^oC) or $Jg^{-1}K^{-1}$.

q = m x C_s x Δ T q = heat (J); m = mass (g); C_s = specific heat capacity; Δ T = temperature change (°C)

molar heat capacity = the amount of heat energy required to raise the temperature of one mole of a substance 1°C.

When gases expand, ΔV is +, but the system is doing work on the surroundings so w is – (negative).

-Work = External Pressure x Change in Volume; $w = -P\Delta V$; to convert the units to joules use 101.3 J = 1 atm·L

<u>Measuring ΔE for chemical reactions: Calorimetry at Constant Volume</u> (experiment)

at constant volume (w=0), $\Delta E_{system} = q_{system}$

 $q_{surroundings} = q_{calorimeter} = -q_{system}$

 $-\Delta E_{\text{reaction (rxn)}} = -q_{\text{rxn}} = q_{\text{cal}} = C_{\text{cal}} \times \Delta T$

 ΔT = temperature change (using a thermometer); q_{cal} = heat absorbed by bomb calorimeter; C_{cal} = heat capacity of bomb calorimeter apparatus.

enthalpy, H, of a system = sum of the internal energy of the system and the product of pressure and volume (H = E + PV).

enthalpy change, ΔH , of a reaction = the heat evolved in a reaction at constant pressure; $\Delta H_{rxn} = q_{rxn}$ at constant pressure.

exothermic = chemical reactions that release heat (ΔH = negative, -, < 0): temperature increases.

endothermic = chemical reactions that absorb heat (ΔH = positive, +, > 0): temperature decreases.

For covalent molecules during a chemical reaction, bond breaking = <u>endothermic</u> and bond forming = <u>exothermic</u>. we calculate the enthalpy change (∆H) for the number of moles of reactants in the reaction as written, e.g.

 $C_3H_8(g) + 5 O_2(g) \rightarrow 3 CO_2(g) + 4 H_2O(g)$ $\Delta H = -2044 \text{ kJ/mol}$

When one mole of propane reacts with five moles of oxygen, 2044 KJ of energy is released. When a hydrocarbon (propane, C_3H_8) takes part in the **combustion reaction** much heat and light energy is given off (released to the surroundings) so $\Delta H < 0$.

Measuring AH: Calorimetry at Constant Pressure (experiment)

Reactions often done in aqueous solutions at constant pressure. Can use a polystyrene/polymer (coffee) cup and lid + thermometer.

 $q_{reaction} = -q_{solution} = -(mass_{solution} \times C_{s, solution} \times \Delta T)$ $\Delta H_{reaction} = q_{constant pressure} = q_{reaction}$

- $\Delta H = -m.C.\Delta T$
- to get $\Delta H_{reaction (rxn)}$ per mol, divide by the number of moles (i.e. Jmol⁻¹).

PRACTICE EXAMPLE ONE

What is $\Delta H_{rxn/mol Mg}$ for the reaction :

Mg(s) + 2 $HCI(aq) \rightarrow MgCI_2(aq)$ + $H_2(g)$

if 0.158 g Mg reacts in 100.0 mL of solution changes the temperature from 25.6°C to 32.8°C? Specific heat (of water) = $4.18 \text{ Jg}^{-1}\text{K}^{-1}$.

0.158 / 24.31 = 0.00645 moles Mg $\Delta H_{rxn/mol Mg}$ = -(100 x 4.18 x (32.8-25.6) / 0.0065) = - 4.6 x 10⁵ Jmol⁻¹

PRACTICE EXAMPLE TWO

What is the heat evolved (ΔH_{rxn}) if 25 cm³ of 1 M sodium hydroxide solution react with 25 cm³ of 1 M hydrochloric acid? The start temperature was 25 °C and the final temperature 31.7 °C. The density of the solutions are assumed to be 1 gcm⁻³ and the specific heat (of water) = 4.18 Jg⁻¹K⁻¹.

25/1000 = 0.025 mole of either NaOH(aq) or HCI(aq) [1:1 stoichiometric ratio]

 $\Delta H_{rxn} = -(50 \times 4.18 \times (31.7 - 25)/0.025) = 5.6 \times 10^{5} \text{ Jmol}^{-1}$

 Δ H is an extensive mathematical number and can be multiplied, subtracted etc. and the sign reversed (see Hess's Law calculations).

Hess's Law: The change in enthalpy (ΔH) for a stepwise reaction is the sum (Σ) of the enthalpy changes of the steps.

 $\Delta H_{\text{reaction}} = \Delta H_1 + \Delta H_2 + \Delta H_3 + \Delta H_4 + \dots = \Sigma \Delta H (1, 2, 3, 4...)$

For example, using an **energy level diagram** to show all the steps (these could also be *intermediate* steps in a chemical reaction):

Let A, B, be the reactants in a chemical reaction. C is an intermediate and D is the product. Step **one** (A + 2B) is *endothermic* (Δ H1 > 0 or positive) and step **two** is *exothermic* (Δ H < 0 or negative); overall **change in enthalpy** is **negative** (exothermic);

 $\Delta H_3 < 0.$

Also, any equation could be arranged to find an unknown ΔH (e.g. $\Delta H_2 = ?$) if we know ΔH_1 and ΔH_3 beforehand. These values usually come from data tables provided in an exam.

 $\Delta H_2 = \Delta H_3 - \Delta H_1$

So Hess's law can be used to find any unknown value of ΔH if we know all the others!

Find the ΔH_{rxn} for the following reaction:

 $C(s) + H_2O(g) \rightarrow CO(g) + H_2(g) \qquad \Delta H_{rxn} = ?$

using these enthalpies - they are combustion reactions:

$C(s) + O_2(g) \rightarrow CO_2(g)$	∆H = -393.5 KJ
$2CO(g) + O_2(g) \rightarrow 2CO_2(g)$	∆H = -566.0 KJ
$2H_2(g) + O_2(g) \rightarrow 2H_2O(g)$	∆H = -483.6 KJ

Solution: We just have to determine how to **sum** these reactions to get the overall reaction of interest. We do this by manipulating the reactions with known ΔH 's in such a way as to get the reactants of interest on the left, the products of interest on the right and other species to cancel.

1.
$$C(s) + O_2(g) \longrightarrow CO_2(g) \ \Delta H = -393.5 \text{ KJ}$$

2. $1/2 \times [2CO_2(g) \longrightarrow 2CO(g) + O_2(g)] \ \Delta H = 1/2 \times (+566.0 \text{ KJ})$
3. $1/2 \times [2H_2O(g) \longrightarrow 2H_2(g) + O_2(g)] \ \Delta H = 1/2 \times (+483.6 \text{ KJ})$

The step 1. remains unchanged as C(s) is a reactant.

The **step 2.** reverses the equation and changes the sign of ΔH ; match the coefficients (x 1/2). The **step 3.** reverses the equation and changes the sign of ΔH ; match the coefficients (x 1/2).

$$\begin{array}{ccc} C(s) + \mathcal{Q}_{2}(g) & \Delta H = -393.5 \text{ KJ} \\ \hline \mathcal{C} \mathcal{Q}_{2}(g) & & CO(g) + 1/2\mathcal{O}_{2}(g) \\ H_{2}O(g) & & H_{2}(g) + 1/2\mathcal{O}_{2}(g) \\ \hline \end{array} \\ \hline \begin{array}{c} \Delta H = +283.0 \text{ KJ} \\ \Delta H = +241.8 \text{ KJ} \\ \hline \Delta H = +241.8 \text{ KJ} \\ \hline \end{array} \\ \hline \hline \begin{array}{c} C(s) + H_{2}O(g) & & CO(g) + H_{2}(g) \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array}$$

Showing this using a Hess's Law enthalpy diagram (it is not necessary to include the O₂ here):

$$C(s) + H_2O(g) \xrightarrow{\Delta H_{rxn}} CO(g) + H_2(g)$$

-393.5 -566/2 -483.6/2
$$CO_2(g) + H_2O(g)$$

 ΔH_{rxn} + 1/2 x (-566 + -483.6) = -393.5 KJ ΔH_{rxn} = -393.5 - [1/2 x (-566 + -483.6)] = +131.3 KJ

PRACTICE EXAMPLE THREE

Calculate the standard **enthalpy of formation** (here $\Delta H_{rxn} = \Delta H^{o}_{f}$) of methane:

 $C(s) + 2H_2(g) \rightarrow CH_4(g) \Delta H_{rxn} = ?$

from the following enthalpy changes (they are the enthalpies of combustion):

CH₄(g) +O₂(g) → CO₂(g) + 2H₂O(l); Δ H = -890 KJ; H₂(g) + 1/2 O₂(g) → H₂O(l); Δ H = -286 KJ; C(s) + O₂(g) → CO₂(g); Δ H = -394 KJ; Δ H - 890 = -394 + 2(-286)

 $\Delta H = +890 - 394 + 2(-286)$ $\Delta H = -76 \text{ KJmol}^{-1}.$ standard state is the state of a material at a defined set of conditions:

- pure gas at exactly 1 atm pressure
- pure solid or liquid in its most stable form at exactly 1 atm pressure and temperature of interest
- usually 25°C
- substance in a solution with concentration 1 M

the **standard enthalpy change**, ΔH° , is the enthalpy change when all reactants and products are in their standard states.

the **standard enthalpy of formation**, ΔH°_{f} , = the enthalpy change for the reaction forming 1 mole of a pure compound from its constituent elements; the elements must be in their standard states; the ΔH°_{f} for a pure element in its standard state = 0 kJ/mol.

```
\begin{array}{ll} \text{elements} \rightarrow \text{compounds} & \Delta H^{o}{}_{f} & \text{or} \\ \text{compounds} \rightarrow \text{elements} & -\Delta H^{o}{}_{f} \end{array}
```

We can use these two concepts - decomposing of a compound into its elements and the forming of a compound from its elements to calculate the **enthalpy change of any reaction**:

reactants \rightarrow products	$\Delta H^{\circ}_{reaction} = \Delta H_1 + \Delta H_2$
elements \rightarrow products	$\Delta H_2 = +\Sigma \Delta H^{o}_{f \text{ (products)}}$ so:
reactants \rightarrow elements	$\Delta H_1 = -\Sigma \Delta H^{\circ}_{f (reactants)}$

We can look at it another way:

The ΔH° for the reaction is then the sum of the ΔH_{f}° for the component reactions:

$\Delta H^{\circ}_{reaction} = \Sigma n \Delta H^{\circ}_{f}(products) - \Sigma n \Delta H^{\circ}_{f}(reactants)$

E.g. Use standard enthalpies to find $\Delta H^{\circ}_{reaction}$ for the reaction:

$$4NH_3(g) + 5O_2(g) \rightarrow 4NO(g) + 6H_2O(g)$$

 $\Delta H^{\circ}_{f} NH_{3}(g) = -45.9 \text{ KJmol}^{-1}, O_{2}(g) = 0.0; NO(g) = +91.3; H_{2}O(g) = -241.8$

These values can be found in the book (Appendix II B A-7 to A-12). Remember to multiple the ΔH°_{f} by the number of moles (stoichiometric amount).

Answer: $\Delta H^{\circ}_{reaction} = [4(+91.3 \text{ KJ}) + 6(-241.8 \text{ KJ})] - [4(-45.9 \text{ KJ}) + 5(0.0) \text{ KJ})]$

= -1085.6 KJ - (-183.6 KJ)

= -902.0 KJ; it's an exothermic reaction!

PRACTICE EXAMPLE FOUR

Calculate the enthalpy change for the following reaction.

 $2 \ C_2H_4(g) + 3O_2(g) \rightarrow \ 2CO_2(g) + 2H_2O(I) \quad \Delta H_{rxn} = ?$

 $\Delta H_{f}^{\circ} C_{2}H_{4}(g) = +52.4 \text{ KJmol}^{-1}; CO_{2}(g) = -393.5; H_{2}O(I) = -285.8$

 $\Delta H^{\circ}_{reaction} = [2(-393.5 \text{ KJ}) + 2(-285.8 \text{ KJ})] - [2(-52.4 \text{ KJ})] = -1253.8 \text{ KJ}$

In the U.S.A., each person uses > 105 kWh of energy per year.

Most comes from the combustion of **fossil fuels** (e.g. coal, methane, petroleum); **global air temperature** has **risen** 0.6 °C in the past 100 years. These cannot be replenished and release other pollutants into the atmosphere during complete or partial combustion.

The CO₂ produced is a greenhouse gas (causes a rise in air and sea temperatures).

Renewable energy sources are increasingly in demand (e.g. solar, wind, hydroelectric). Our greatest unlimited supply is the sun. Burning hydrogen in oxygen/air as a fuel is much safer for the environment!